参考文献

参考文献

[散在参考文献]

[Dwork60]

Dwork, B. (1960). On the rationality of the zeta function of an algebraic variety. American Journal of Mathematics, 82(3), 631-648.

[Gro58]

Grothendieck, A. (1958, August). The cohomology theory of abstract algebraic varieties. In Proceedings of the International Congress of Mathematicians (pp. 103-18).

[Deligne74]

Deligne, P. (1974). La conjecture de Weil. I. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 43, 273-307.

[Hochster69]

Hochster, M. (1969). Prime ideal structure in commutative rings. Transactions of the American Mathematical Society, 142, 43-60.AMS.

[同调代数部分参考]

[李文威卷一]

李文威. (2018). 代数学方法 (卷一) 基础架构. 北京: 高等教育出版社

[李文威卷二]

李文威. (2022). 代数学方法 (卷二) 线性代数.

[代数几何部分参考]

[Hartshorne]

Hartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science & Business Media.

[Görtz I]

Görtz, U., & Wedhorn, T. (2010). Algebraic Geometry I: Schemes. Vieweg+ Teubner.

[Görtz II]

Görtz, U., & Wedhorn, T. (2023). Algebraic Geometry II: Cohomology of Schemes.

[Scholze]

Scholze, P. (2016). Algebraic Geometry I. Lecture Note typed by Davies, J.

[扶磊]

扶磊. (2006). Algebraic Geometry. Tsinghua University Press.

[平展上同调参考]

[扶磊 Étale]

Fu, L. (2011). Etale cohomology theory (Vol. 13). World Scientific.

[milneLEC]

James S. Milne. (2013). Lectures on étale cohomology.

[milne80]

James S. Milne. (1980). Étale Cohomology. Princeton university press.

[SGA-IV]

Alexander Grothendieck, Micheal Artin, and J.-L. Verdier. (1972). Théorie des Topos et Cohomologie Etale des Schémas (SGA 4). Tome 2. Springer-Verlag.

[SGA-I]

Alexander Grothendieck and Michele Raynaud. (1971). Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag

[FGAExplained]

Books, M. P., Bookshelf, M., & Copied, S. (2005). Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical surveys and monographs, 123, 339.

[外篇内容参考]

[BS13]

Bhargav Bhatt and Peter Scholze. (2013). The pro-étale topology for schemes. Preprint.

[SixFunctors]

Peter Scholze (2022). Six Functor Formalisms. lecture notes.

[Ma22]

Mann, L. (2022). A -Adic 6-Functor Formalism in Rigid-Analytic Geometry. arXiv preprint arXiv:2206.02022.

[LZ12a]

Liu, Y., & Zheng, W. (2012). Enhanced six operations and base change theorem for higher Artin stacks. arXiv preprint arXiv:1211.5948.

[HTT]

Lurie, J. (2009). Higher topos theory. Princeton University Press.

[HA]

Lurie, J. (2017). Higher Algebra.

[Kerodon]

Lurie, J. (2018). Kerdon.

[Land]

Land, M. (2021). Introduction to Infinity-categories. Springer Nature.

[卜辰璟]

卜辰璟. (2019). 讲义: 同伦代数与同调代数. 香蕉空间.

[温尊]

温尊. (2023). 讲义: 给几何人的平展上同调. 香蕉空间.

[HHR21]

Hebestreit, F., Heuts, G., & Ruit, J. (2021). A short proof of the straightening theorem. arXiv preprint arXiv:2111.00069.

[MG15]

Mazel-Gee, A. (2015). A user’s guide to co/cartesian fibrations. arXiv preprint arXiv:1510.02402.

[Münster]

Krause, A. & Nikolau, T. (2020). -Categories and Higher Algebra. Homotopy Theory Münster. YouTube.

[JOYAL2002207]

Joyal, A. (2002). Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra, 175(1-3), 207-222.

[StacksProject]

Stacks project collaborators. (2018). Stacks Project

[Hovey]

Hovey, M. (2007). Model categories (No. 63). American Mathematical Soc..

[nLab]

nLab auuthors. (2024). nLab

[GZ67]

Gabriel, P., & Zisman, M. (2012). Calculus of fractions and homotopy theory (Vol. 35). Springer Science & Business Media.

[Bek00]

Beke, T. (2000, November). Sheafifiable homotopy model categories. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 129, No. 3, pp. 447-475). Cambridge University Press.

[SAG]

Lurie, J. (2018). Spectral Algebraic Geometry.

[Chu–Haugseng 2021]

Chu, H., & Haugseng, R. (2021). Homotopy-coherent algebra via Segal conditions. Advances in Mathematics, 385, 107733.

[Nikolaus 24]

Achim Krause, Thomas Nikolaus, Phil Pützstück. (2024). Sheaves on Manifolds