参考文献
参考文献
[散在参考文献] | |
[Dwork60] | Dwork, B. (1960). On the rationality of the zeta function of an algebraic variety. American Journal of Mathematics, 82(3), 631-648. |
[Gro58] | Grothendieck, A. (1958, August). The cohomology theory of abstract algebraic varieties. In Proceedings of the International Congress of Mathematicians (pp. 103-18). |
[Deligne74] | Deligne, P. (1974). La conjecture de Weil. I. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 43, 273-307. |
[Hochster69] | Hochster, M. (1969). Prime ideal structure in commutative rings. Transactions of the American Mathematical Society, 142, 43-60.AMS. |
[同调代数部分参考] | |
[李文威卷一] | 李文威. (2018). 代数学方法 (卷一) 基础架构. 北京: 高等教育出版社 |
[李文威卷二] | 李文威. (2022). 代数学方法 (卷二) 线性代数. |
[代数几何部分参考] | |
[Hartshorne] | Hartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science & Business Media. |
[Görtz I] | Görtz, U., & Wedhorn, T. (2010). Algebraic Geometry I: Schemes. Vieweg+ Teubner. |
[Görtz II] | Görtz, U., & Wedhorn, T. (2023). Algebraic Geometry II: Cohomology of Schemes. |
[Scholze] | Scholze, P. (2016). Algebraic Geometry I. Lecture Note typed by Davies, J. |
[扶磊] | 扶磊. (2006). Algebraic Geometry. Tsinghua University Press. |
[平展上同调参考] | |
[扶磊 Étale] | Fu, L. (2011). Etale cohomology theory (Vol. 13). World Scientific. |
[milneLEC] | James S. Milne. (2013). Lectures on étale cohomology. |
[milne80] | James S. Milne. (1980). Étale Cohomology. Princeton university press. |
[SGA-IV] | Alexander Grothendieck, Micheal Artin, and J.-L. Verdier. (1972). Théorie des Topos et Cohomologie Etale des Schémas (SGA 4). Tome 2. Springer-Verlag. |
[SGA-I] | Alexander Grothendieck and Michele Raynaud. (1971). Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag |
[FGAExplained] | Books, M. P., Bookshelf, M., & Copied, S. (2005). Fundamental algebraic geometry: Grothendieck’s FGA explained. Mathematical surveys and monographs, 123, 339. |
[外篇内容参考] | |
[BS13] | Bhargav Bhatt and Peter Scholze. (2013). The pro-étale topology for schemes. Preprint. |
[SixFunctors] | Peter Scholze (2022). Six Functor Formalisms. lecture notes. |
[Ma22] | Mann, L. (2022). A -Adic 6-Functor Formalism in Rigid-Analytic Geometry. arXiv preprint arXiv:2206.02022. |
[LZ12a] | Liu, Y., & Zheng, W. (2012). Enhanced six operations and base change theorem for higher Artin stacks. arXiv preprint arXiv:1211.5948. |
[HTT] | Lurie, J. (2009). Higher topos theory. Princeton University Press. |
[HA] | Lurie, J. (2017). Higher Algebra. |
[Kerodon] | Lurie, J. (2018). Kerdon. |
[Land] | Land, M. (2021). Introduction to Infinity-categories. Springer Nature. |
[卜辰璟] | 卜辰璟. (2019). 讲义: 同伦代数与同调代数. 香蕉空间. |
[温尊] | 温尊. (2023). 讲义: 给几何人的平展上同调. 香蕉空间. |
[HHR21] | Hebestreit, F., Heuts, G., & Ruit, J. (2021). A short proof of the straightening theorem. arXiv preprint arXiv:2111.00069. |
[MG15] | Mazel-Gee, A. (2015). A user’s guide to co/cartesian fibrations. arXiv preprint arXiv:1510.02402. |
[Münster] | Krause, A. & Nikolau, T. (2020). -Categories and Higher Algebra. Homotopy Theory Münster. YouTube. |
[JOYAL2002207] | Joyal, A. (2002). Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra, 175(1-3), 207-222. |
[StacksProject] | Stacks project collaborators. (2018). Stacks Project |
[Hovey] | Hovey, M. (2007). Model categories (No. 63). American Mathematical Soc.. |
[nLab] | nLab auuthors. (2024). nLab |
[GZ67] | Gabriel, P., & Zisman, M. (2012). Calculus of fractions and homotopy theory (Vol. 35). Springer Science & Business Media. |
[Bek00] | Beke, T. (2000, November). Sheafifiable homotopy model categories. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 129, No. 3, pp. 447-475). Cambridge University Press. |
[SAG] | Lurie, J. (2018). Spectral Algebraic Geometry. |
[Chu–Haugseng 2021] | Chu, H., & Haugseng, R. (2021). Homotopy-coherent algebra via Segal conditions. Advances in Mathematics, 385, 107733. |
[Nikolaus 24] | Achim Krause, Thomas Nikolaus, Phil Pützstück. (2024). Sheaves on Manifolds |