GTM 102 - Lie Groups, Lie Algebras and Their Representations

1Lie Groups and Lie Algebras

Closed Lie Subgroups and Homogeneous Spaces. Orbits and Spaces of Orbits

自由作用在 上, , 实际上是等价关系的图.

引理 1.1. The quotient topology on is Hausdorff if and only if is closed in . In this case all the orbits in are closed regular submanifolds of .

证明.
证明. 这个引理实际上就是 [BourTG, I.55, Prop.8], 因为这个等价关系是开的.

定理 1.2. Let act freely on . Then the following are equivalent:

1.

is closed in , and is a homeomorphism of onto .

2.

is closed in ; moreover, given any we can find a regular submanifold of passing through such that (a) is the direct sum of and , and (b) is one-to-one on .

3.

There exists an analytic structure on such that is an analytic submersion.

由 [BourTG, III.31, Prop.6] 知道这个条件实际上就是 紧合作用在 上.
证明.

证明. (1) 推 (2) 中:

由引理 1.1 和常秩定理, 可以在 附近选择一个坐标系, 使得 是前 个坐标的切片, 这样选择 为剩下的坐标的切片即可.

满射到 中; 把 满射到 中, 而 , 所以 是满射, 进而是单射.

是第二可数的, 故若在 的任意 中的邻域里 都不是单射, 则可以选一个 中的 的可数局部基 (邻域的基本系统), , 且满足 . 这样在每个 中, 由于 不是单射, 故存在两个不同的 使得 这样有 使得 . 同时 都收敛到 . 是同胚则标准映射 是连续的 (见 [BourTG, III.31, Prop.6] 的证明). 则 .

(2) 推 (3) 中:

的拓扑是 Hausdorff 和第二可数, 是双射均与之前的推理相同.

当在 上有 时, , 故 进而有 的自由作用可得 .

笔误: is open in (而不是 ).

只和第二个变量有关, 故任取第一个变量, 比如 , 则它就是 .

(3) 推 (1) 中: 实际上设 , 则 , . 同胚当且仅当 连续. 由于光滑流形可度量 [BourTG, IX.21, Corollaire], 故只需要考虑序列的情况 [BourTG, IX.17, Prop.10].

是浸没时, 由常秩定理, 存在 的开邻域 和相应的坐标系, 使得在这个坐标系下 , 也表示坐标函数. 则取 不难验证这样就满足条件 (a) 和 (b) 了.

推论 1.3. Let be a compact Lie group acting freely and analytically on . Then admits a unique analytic structure structure for which is a submersion.

证明.
证明. 实际上, 由 [BourTG, III.33, Th.1], 紧 Haudsorff 群连续作用在局部紧空间上时, 这个作用是紧和的.

推论 1.4. Let be a discrete group acting freely and analytically on , and let be closed in . Then, in order that admit an analytic structure such that is a submersion, it is necessary and sufficient that the following condition be satisfied: for each we can find an open subset of containing such that for any in .

证明.
证明. 实际上由 [DieckAT, Proposition 14.1.12] 可得这个条件与弱紧和 (weakly proper) 等价, 再加上 是闭集, 就与紧和等价了.

[BourTG]

N.Bourbaki: Topologie Générale.

[DieckAT]

T.T.Dieck: Algebraic Topology